Community

AES Convention Papers Forum

InSE-NET: A Perceptually Coded Audio Quality Model based on CNN

Document Thumbnail

Automatic coded audio quality assessment is an important task whose progress is hampered by the scarcity of human annotations, poor generalization to unseen codecs, bitrates, content-types, and a lack of flexibility of existing approaches. One of the typical human-perception-related metrics, ViSQOL v3 (ViV3), has been proven to provide a high correlation to the quality scores rated by humans. In this study, we take steps to tackle problems of predicting coded audio quality by completely utilizing programmatically generated data that is informed with expert domain knowledge. We propose a learnable neural network, entitled InSE-NET, with a backbone of Inception and Squeeze-and-Excitation modules to assess the perceived quality of coded audio at a 48 kHz sample rate. We demonstrate that synthetic data augmentation is capable of enhancing the prediction. Our proposed method is intrusive, i.e. it requires Gammatone spectrograms of unencoded reference signals. Besides a comparable performance to ViV3, our approach provides a more robust prediction towards higher bitrates.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society