Community

AES Convention Papers Forum

Audio-Source Rendering on Flat-Panel Loudspeakers with Non-Uniform Boundary Conditions

Document Thumbnail

Devices from smartphones to televisions are beginning to employ dual purpose displays, where the display serves as both a video screen and a loudspeaker. In this paper we demonstrate a method to generate localized sound-radiating regions on a flat-panel display. An array of force actuators affixed to the back of the panel is driven by appropriately filtered audio signals so the total response of the panel due to the actuator array approximates a target spatial acceleration profile. The response of the panel to each actuator individually is initially measured via a laser vibrometer, and the required actuator filters for each source position are determined by an optimization procedure that minimizes the mean squared error between the reconstructed and targeted acceleration profiles. Since the single-actuator panel responses are determined empirically, the method does not require analytical or numerical models of the system’s modal response, and thus is well-suited to panels having the complex boundary conditions typical of television screens, mobile devices, and tablets. The method is demonstrated on two panels with differing boundary conditions. When integrated with display technology, the localized audio source rendering method may transform traditional displays into multimodal audio-visual interfaces by colocating localized audio sources and objects in the video stream.

Open Access

Open
Access

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:


Download Now (2.6 MB)

This paper is Open Access which means you can download it for free.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society