Community

AES Convention Papers Forum

A Formula for Low-Frequency Interaural Level Difference

Document Thumbnail

A formula for low-frequency interaural level difference (LF-ILD) as a function of source distance and direction is derived from rigid-sphere head-related transfer function (RS-HRTF) theory. Since ILD at low frequencies (typically ƒ < 700Hz) is a dominant cue for near-field distance perception in the free-field, a simple formula akin to the Woodworth formula for high-frequency interaural time difference, may be beneficial to easily and efficiently implement distance- and direction-dependent LF-ILDs for real-time spatial audio applications on devices with limited computational resources. By evaluating the limit as ƒ → 0 of the infinite series representation of the RS-HRTF for finite source distances, an exact, closed-form expression for the “DC gain” as a function of source distance and direction is derived. For a given source location, using this expression to compute the DC gain at the left and right “ears,” and then taking the ratio of the two quantities gives the desired LF-ILD. As an example, it is shown that the derived formula may be used to extrapolate far-field ILD spectra of a rigid sphere to the near-field exactly for low frequencies and with sufficiently high accuracy for higher frequencies. Furthermore, the derived formula, like the Woodworth formula, is well-suited to individualization.

Open Access

Open
Access

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:


Download Now (232 KB)

This paper is Open Access which means you can download it for free.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society