Micro-electro-mechanical system (MEMS) microphones have been widely used in the mobile devices in recent decades. The acoustic effects of a chip scale package on a MEMS microphone needs to be validated. Previously a lumped equivalent circuit model was adopted to analyze the acoustic frequency response of the package. However, such a theoretical model cannot predict performance at relatively high frequencies. In this paper a distributed parameter model was proposed to simulate the acoustic behavior of the MEMS microphone package. The model illustrates how the MEMS microphone acoustic transfer function is affected by the size of sound hole, the volumes of the front and back chamber. This model also can illustrate the mechanical response of the MEMS microphone. The proposed model provided a more reliable way towards an optimized MEMS package structure.
Authors:
Nie, Yafei; Sang, Jinqiu; Zheng, Chengshi; Li, Xiaodong
Affiliations:
Institute of Acoustics, Chinese Academy of Sciences, Beijing, China; Chinese Academy of Sciences, Beijing, China(See document for exact affiliation information.)
AES Convention:
147 (October 2019)
Paper Number:
10231
Publication Date:
October 8, 2019
Subject:
Posters: Transducers
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.