By breaking up the phase coherence of a signal broadcast from multiple loudspeakers, it is possible to control the perceived spatial extent and location of a sound source. This so-called signal decorrelation process is commonly achieved using a set of linear filters and finds applications in audio upmixing, spatialization, and auralization. Allpass filters make ideal decorrelation filters since they have unit magnitude spectra and therefore can be perceptually transparent. Here, we present a method for designing allpass decorrelation filters by specifying group delay trajectories in a way that allows for control of the amount of correlation as a function of frequency. This design is efficiently implemented as a cascade of biquad allpass filters. We present statistical and perceptual methods for evaluating the amount of decorrelation and audible distortion.
Authors:
Canfield-Dafilou, Elliot K.; Abel, Jonathan S.
Affiliation:
Center for Computer Research in Music and Acosutics (CCRMA), Stanford University, Stanford, CA, USA
AES Convention:
144 (May 2018)
Paper Number:
9991
Publication Date:
May 14, 2018
Subject:
Posters: Audio Processing/Audio Education
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.