A head-related transfer function (HRTF) is a very simple and powerful tool for producing spatial sound by filtering monaural sound. It represents the effects of the head, body, and pinna as well as the pathway from a given source position to a listener’s ears. Unfortunately, while the characteristics of HRTF differ slightly from person to person, it is usual to use the HRIR that is averaged over all the subjects. In addition, it is difficult to measure individual HRTFs for all horizontal and vertical directions. Thus, this paper proposes a deep neural network (DNN)-based HRTF personalization method using anthropometric measurements. To this end, the CIPIC HRTF database, which is a public domain database of HRTF measurements, is analyzed to generate a DNN model for HRTF personalization. The input features for the DNN are taken as the anthropometric measurements, including the head, torso, and pinna information. Additionally, the output labels are taken as the head-related impulse response (HRIR) samples of a left ear. The performance of the proposed method is evaluated by computing the root-mean-square error (RMSE) and log-spectral distortion (LSD) between the referenced HRIR and the estimated one by the proposed method. Consequently, it is shown that the RMSE and LSD for the estimated HRIR are smaller than those of the HRIR averaged over all the subjects from the CIPIC HRTF database.
Authors:
Chun, Chan Jun; Moon, Jung Min; Lee, Geon Woo; Kim, Nam Kyun; Kim, Hong Kook
Affiliations:
Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Korea; Gwangju Institute of Science and Technology (GIST), Gwangju. Korea; Gwangju Institute of Science and Technology (GIST), Gwangju, Korea; Gwangju Institute of Science and Tech (GIST), Gwangju, Korea(See document for exact affiliation information.)
AES Convention:
143 (October 2017)
Paper Number:
9860
Publication Date:
October 8, 2017
Subject:
Spatial Audio
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.