AES Convention Papers Forum

Analysis and Prediction of the Audio Feature Space when Mixing Raw Recordings into Individual Stems

Document Thumbnail

Processing individual stems from raw recordings is one of the first steps of multitrack audio mixing. In this work we explore which set of low-level audio features are sufficient to design a prediction model for this transformation. We extract a large set of audio features from bass, guitar, vocal, and keys raw recordings and stems. We show that a procedure based on random forests classifiers can lead us to reduce significantly the number of features and we use the selected audio features to train various multi-output regression models. Thus, we investigate stem processing as a content-based transformation, where the inherent content of raw recordings leads us to predict the change of feature values that occurred within the transformation.

AES Convention: Paper Number:
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society