AES Convention Papers Forum

Detection of Piano Pedaling Techniques on the Sustain Pedal

Document Thumbnail

Automatic detection of piano pedaling techniques is challenging as it is comprised of subtle nuances of piano timbres. In this paper we address this problem on single notes using decision-tree-based support vector machines. Features are extracted from harmonics and residuals based on physical acoustics considerations and signal observations. We consider four distinct pedaling techniques on the sustain pedal (anticipatory full, anticipatory half, legato full, and legato half pedaling) and create a new isolated-note dataset consisting of different pitches and velocities for each pedaling technique plus notes played without pedal. Experiment shows the effectiveness of the designed features and the learned classifiers for discriminating pedaling techniques from the cross-validation trails.

AES Convention: Paper Number:
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society