AES Convention Papers Forum

Implementing the Radiation Characteristics of Musical Instruments in a Psychoacoustic Sound Field Synthesis System

Document Thumbnail

A method is introduced to measure the radiation characteristics of musical instruments and to calculate the sound field radiated to an extended listening area. This sound field is synthesized by means of a loudspeaker system to create a natural, spatial instrumental sound. All instruments are considered as complex point sources, which makes it easy to measure, analyze, and compare their radiation characteristics as well as to propagate the radiated sound to discrete listening points. The sound field at these listening points as well as the loudspeaker driving signals to synthesize them are calculated in frequency domain. This makes spatial windowing superfluous and allows for all loudspeakers to be active for any virtual source position. However, this procedure introduces synthesis errors that are compensated for the listener by implementing psychoacoustic methods. The synthesis principle works already with low-order loudspeaker systems such as discrete quadraphonic and 5.1 systems as well as with existing ambisonics and wave field synthesis setups with dozens to hundreds of loudspeakers. Aliasing frequency and synthesis precision are dependent on the number of loudspeakers and the extent of the listening area, not on the distance of adjacent loudspeakers. A listening test demonstrates that the approach creates a listening experience comparable with mono and stereo concerning localization and naturalness of the sound and an increased spaciousness.

AES Convention: Paper Number:
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society