This paper explores the time and phase response of circular-arc CBT arrays through simulation and measurement. Although the impulse response of the CBT array is spread out in time, it’s phase response is found to be minimum phase at all locations in front of the array: up-down, side-to-side, and near-far. When the magnitude response is equalized flat with a minimum-phase filter, the resultant phase is substantially linear phase over a broad frequency range at all these diverse locations. This means that the CBT array is essentially time aligned and linear phase and as a result will accurately reproduce square waves anywhere within its coverage. Accurate reproduction of square waves is not necessarily audible but many people believe that it is an important loudspeaker characteristic. The CBT array essentially forms a virtual point-source but with the extremely-uniform broadband directional coverage of the CBT array itself. When the CBT array is implemented with discrete sources, the impulse response mimics a FIR filter but with non-linear sample spacing and with a shape that looks like a roller coaster track viewed laterally. An analysis of the constant-phase wave fronts generated by a CBT array reveals that the sound waves essentially radiate from a point that is located at the center of curvature of the array’s circular arc and are essentially circular at all distances, mimicking a point source.
Author:
Keele, Jr., D. B. (Don)
Affiliation:
DBK Associates and Labs, Bloomington, IN, USA
AES Convention:
139 (October 2015)
Paper Number:
9387
Publication Date:
October 23, 2015
Subject:
Transducers
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.