Loudspeaker cabinets should not contribute at all to the total sound radiation but aim instead to be a perfectly rigid box that encloses the drive units. To achieve this goal, state of the art FEM software packages and Doppler vibro-meters are the tools at our disposal. The modeling steps covered in the paper are: measuring and fitting orthotropic material properties, including damping; 3D mechanical modeling with a curvilinear coordinates system and thin elastic layers to represent glue joints; scanning laser Doppler measurements and single point vibration measurements with an accelerometer. Additionally a numerically efficient post-processing approach used to extract the total radiated acoustic power and an example of what kind of improvement can be expected from a typical design optimization are presented.
Authors:
Cobianchi, Mattia; Rousseau, Martial
Affiliation:
B&W Group Ltd., West Sussex, UK
AES Convention:
139 (October 2015)
Paper Number:
9367
Publication Date:
October 23, 2015
Subject:
Transducers/Perception
Download Now (1.4 MB)
This paper is Open Access which means you can download it for free.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.