Community

AES Convention Papers Forum

Perceptual Band Allocation (PBA) for the Rendering of Vertical Image Spread with a Vertical 2D Loudspeaker Array

Document Thumbnail

A series of subjective experiments were conducted to investigate a novel vertical image rendering method named “Perceptual Band Allocation (PBA),” using octave bands of pink noise with a vertical 2D reproduction setup with main and height loudspeaker pairs. The perceived height of each octave band was first measured for the main and height loudspeakers individually. Results suggested a significant difference between monophonic and stereophonic images in the perceived relationship between frequency and height. Six different test conditions have been created aiming for various degrees of vertical image spread, in such a way that each frequency band was mapped to either the main or height loudspeaker layer based on the results from the localization experiment. Multiple comparison tests were conducted to grade the perceived magnitude of vertical image spread. It was generally found that various degrees of vertical image spread could be rendered using different PBA schemes, but the perceived results did not fully match predicted results based on the localization results. Differences between the main and height loudspeaker layers in the spectral weightings of ear-input signal at certain frequencies was identified as one of the factors that influenced this result.

Author:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society