AES Convention Papers Forum

Recognition of Hazardous Acoustic Events Employing Parallel Processing on a Supercomputing Cluster

Document Thumbnail

A method for automatic recognition of hazardous acoustic events operating on a super computing cluster is introduced. The methods employed for detecting and classifying the acoustic events are outlined. The evaluation of the recognition engine is provided: both on the training set and using real-life signals. The algorithms yield sufficient performance in practical conditions to be employed in security surveillance systems. The specialized framework for parallel processing of multimedia data streams KASKADA, in which the methods are implemented, is briefly introduced. An experiment intended to assess outcomes of parallel processing of audio data on a supercomputing cluster is featured. It is shown that by employing supercomputing services the time needed to analyze the data is greatly reduced.

AES Convention: Paper Number:
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society