This paper investigates the use of Convolutional Neural Networks for spatial audio classification. In contrast to traditional methods that use hand-engineered features and algorithms, we show that a Convolutional Network in combination with generic preprocessing can give good results and allows for specialization to challenging conditions. The method can adapt to e.g. different source distances and microphone arrays, as well as estimate both spatial location and audio content type jointly. For example, with typical single-source material in a simulated reverberant room, we can achieve cross-validation accuracy of 94.3% for 40-ms frames across 16 classes (eight spatial directions, content type speech vs. music).
Author:
Hirvonen, Toni
Affiliation:
Dolby Laboratories, Stockholm, Sweden
AES Convention:
138 (May 2015)
Paper Number:
9294
Publication Date:
May 6, 2015
Subject:
Sound Localization and Separation
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.