Community

AES Convention Papers Forum

Active Loudspeaker Heat Protection

Document Thumbnail

Loudspeakers are devices that accumulate heat during their transduction process. The rise of temperature is potentially harmful for the voice-coil and must be countered by the active heat control (AHC) process when other passive and mechanical dissipation schemes become inefficient. Known AHC aim at limiting the voice-coil temperature through a closed-loop approach and may lead to oscillations and audio artifacts when temperature measurements are available with latency. This paper establishes that an open-loop AHC relying on a dynamic range compressor configured as a brick-wall limiter whose threshold is modulated by the temperature of the magnetic components insures a bounded voice-coil temperature. The temperature of the magnetic assembly and the driving force of the loudspeaker can be both estimated in real-time, respectively by a linear quadratic observer (a Kalman filter) and by an envelope follower. The new AHC scheme is demonstrated and compared to closed-loop AHC on a simulation example.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society