Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

Robust 3-D Sound Source Localization Using Spherical Microphone Arrays

Spherical arrays are gaining increased interest in spatial audio reproduction, especially in Higher Order Ambisonics. In many audio applications the sound source detection and localization is of crucial importance, urging for robust localization methods suitable for spherical arrays. The well-known direction-of-arrival estimator, the ESPRIT algorithm, is not directly applicable to spherical arrays for 3-D applications. The eigenbeam ESPRIT (EB-ESPRIT) is based on the spherical harmonics framework and is especially derived for spherical arrays. However, the ESPRIT method is in general susceptible to errors in the presence of correlated sources and spatial decorrelation is not possible for spherical arrays. In our new implementation of spherical harmonics-based ESPRIT (SA2ULA-ESPRIT) the robustness against correlation is achieved by spatial decorrelation incorporated directly in the algorithm formulation. The simulated performance of the new algorithm is compared to EB-ESPRIT.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society