Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

An Embedded-Processor Driven Test Bench for Acoustic Feedback Cancellation in Real Environments

In order to facilitate the communication among speakers, speech reinforcement systems equipped with microphones and loudspeakers are employed. Due to the acoustic couplings between them, the speech intelligibility may result ruined and, moreover, high channel gains could drive the system to instability. Acoustic Feedback Cancellation (AFC) methods need to be applied to keep the system stable. In this paper a new Test Bench for testing AFC algorithms in real environments is proposed. It is based on the TMS320C6748 processor, running the Suppressor-PEM algorithm, a recent technique based on the PEM-AFROW paradigm. The partitioned block frequency domain adaptive filter (PB-FDAF) paradigm has been adopted to keep the computational complexity low. A professional sound card and a PC, where an automatic gain controller has been implemented to prevent signal clipping, complete the framework. Several experimental tests confirmed the framework suitability to operate under diverse acoustic conditions.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society