Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

A Speech-Based System for In-Home Emergency Detection and Remote Assistance

This paper describes a system for the detection of emergency states and for the remote assistance of people in their own homes. Emergencies are detected recognizing distress calls by means of a speech recognition engine. When an emergency is detected, a phone call is automatically established with a relative or friend by means of a VoIP stack and an Acoustic Echo Canceller. Several low-consuming embedded units are distributed throughout the house to monitor the acoustic environment, and one central unit coordinates the system operation. This unit also integrates multimedia content delivery services and home automation functionalities. Being an ongoing project, this paper describes the entire system and then focuses on the algorithms implemented for the acoustic monitoring and the hands-free communication services. Preliminary experiments have been conducted to assess the performance of the recognition module in noisy and reverberated environments and the out of grammar rejection capabilities. Results showed that the implemented Power Normalized Cepstral Coefficients extraction pipeline improves the word recognition accuracy in noisy and reverberated conditions, and that introducing a "garbage phone" in the acoustic model allows to effectively reject out of grammar words and sentences.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society