Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

User-Driven Quality Enhancement for Audio Signal Processing

Classical methods for audio and speech enhancement are often based on error-driven optimization strategies, such as the mean-square error minimization. However, these approaches do not always satisfy the quality requirements demanded by users of the system. In order to meet subjective specifications, we put forward the idea of a user-driven approach to audio enhancement through the inclusion in the optimization stage of an interactive evolutionary algorithm (IEA). In this way, performance of the system can be adapted to any user in a principled and systematic way, thus reflecting the desired subjective quality. Experiments in the context of echo cancellation support the proposed methodology, showing significant statistical advantage of the proposed framework with respect to classical approaches.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society