Classification of music by mood is a growing area of research with interesting applications, including navigation of large music collections. Mood classifiers are usually based on acoustic features extracted from the music, but often they are used without knowing which ones are most effective. This paper describes how 63 acoustic features were evaluated using 2,389 music tracks to determine their individual usefulness in mood classification, before using feature selection algorithms to find the optimum combination.
Author:
Baume, Chris
Affiliation:
BBC Research and Development, London, UK
AES Convention:
134 (May 2013)
Paper Number:
8811
Publication Date:
May 4, 2013
Subject:
Education and Semantic Audio
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.