Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

Aspects of Microphone Array Source Separation Performance

The performance of a blind source separation system based on a custom microphone array is explored. The system prioritizes artifact-free processing over source separation effectiveness and extracts source signals using a quadratically constrained least-squares fit based on estimated source arrival directions. The level of additive noise present in extracted source signals is computed empirically for various numbers of microphones used and different degrees of uncertainty in knowledge of microphone locations. The results are presented in comparison to analytical predictions. The source signal estimate variance is roughly inversely proportional to the number of sensors and roughly proportional to both the additive noise variance and microphone position error variance. Beyond a threshold the advantages of increased channel count and precise knowledge of the sensor locations are outweighed by other limitations.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society