Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

Speech Separation with Microphone Arrays Using the Mean Shift Algorithm

Microphone arrays provide spatial resolution that is useful for speech source separation due to the fact that sources located in different positions cause different time and level differences in the elements of the array. This feature can be combined with time-frequency masking in order to separate speech mixtures by means of clustering techniques, such as the so-called DUET algorithm, which uses only two microphones. However, there are applications where larger arrays are available, and the separation can be performed using all these microphones. A speech separation algorithm based on mean shift clustering technique has been recently proposed using only two microphones. In this work the aforementioned algorithm is generalized for arrays of any number of microphones, testing its performance with echoic speech mixtures. The results obtained show that the generalized mean shift algorithm notably outperforms the results obtained by the original DUET algorithm.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society