Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

Envelope-Based Spatial Parameter Estimation in Directional Audio Coding

Directional Audio Coding provides an efficient description of spatial sound in terms of few audio downmix signals and parametric side information, namely the direction-of-arrival (DOA) and diffuseness of the sound. This representation allows an accurate reproduction of the recorded spatial sound with almost arbitrary loudspeaker setups. The DOA information can be efficiently estimated with linear microphone arrays by considering the phase information between the sensors. Due to the microphone spacing, the DOA estimates are corrupted by spatial aliasing at higher frequencies affecting the sound reproduction quality. In this paper we propose to consider the signal envelope for estimating the DOA at higher frequencies to avoid the spatial aliasing problem. Experimental results show that the presented approach has great potential in improving the estimation accuracy and rendering quality.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society