Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

On Accommodating Pitch Variation in Long Term Prediction of Speech and Vocals in Audio Coding

Exploiting inter-frame redundancies is key to performance enhancement of delay constrained perceptual audio coders. The long term prediction (LTP) tool was introduced in the MPEG Advanced Audio Coding standard, especially for the low delay mode, to capitalize on the periodicity in naturally occurring sounds by identifying a segment of previously reconstructed data as prediction for the current frame. However, speech and vocal content in audio signals is well known to be quasi-periodic and involve small variations in pitch period, which compromise the LTP tool performance. The proposed approach modifies LTP by introducing a single parameter of “geometric” warping, whereby past periodicity is geometrically warped to provide an adjusted prediction for the current samples. We also propose a three-stage parameter estimation technique, where an unwarped LTP filter is first estimated to minimize the mean squared prediction error; then filter parameters are complemented with the warping parameter, and re-estimated within a small neighboring search space to retain the set of S best LTP parameters; and finally, a perceptual distortion-rate procedure is used to select from the S candidates, the parameter set that minimizes the perceptual distortion. Objective and subjective evaluations substantiate the proposed technique’s effectiveness.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society