Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

A Simple and Efficient Method for Real-Time Computation and Transformation of Spherical Harmonic-Based Sound Fields

The potential for higher order Ambisonics to be applied to audio applications such as virtual reality, live music, and computer games relies entirely on the real-time performance characteristics of the system, as the computational overhead determines factors of latency and, consequently, user experience. Spherical harmonic functions are used to describe the directional information in an Ambisonic sound field, and as the order of the system is increased, so too is the computational expense, due to the added number of spherical harmonic functions to be calculated. The present paper describes a method for simplified implementation and efficient computation of the spherical harmonic functions and applies the technique to the transformation of encoded sound fields. Comparisons between the new method and typical direct calculation methods are presented.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society