Microphone arrays are in the focus of interest for spatial audio recording applications or the analysis of sound fields. But one of the major problems of microphone arrays is the limited operational frequency range. Especially at high frequencies spatial aliasing artifacts tend to disturb the output signal. This severely restricts the applicability and acceptance of microphone arrays in practice. A new approach to enhance the bandwidth of microphone arrays is presented, which is based on some restrictive assumptions concerning natural sound fields, the separate acquisition and treatment of spatiotemporal and spectrotemporal sound field properties, and the subsequent synthesis of array signals for critical frequency bands. Additionally, the method can be used for spatial audio data reduction algorithms.
Author:
Bernschütz, Benjamin
Affiliations:
Cologne University of Applied Sciences, Cologne, Germany; Technical University of Berlin, Berlin, Germany(See document for exact affiliation information.)
AES Convention:
133 (October 2012)
Paper Number:
8751
Publication Date:
October 25, 2012
Subject:
Transducers
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.