Journal Forum

Audibility of a CD-Standard A/DA/A Loop Inserted into High-Resolution Audio Playback - September 2007
13 comments

Sound Board: Food for Thought, Aesthetics in Orchestra Recording - April 2015
2 comments

Reflecting on Reflections - June 2014
4 comments

Access Journal Forum

AES Convention Papers Forum

Period Deviation Tolerance Templates: A Novel Approach to Evaluation and Specification of Self-Synchronizing Audio Converters

Self-synchronizing converters represent an elegant and cost effective solution for audio functionality integration into SoC (System-on-Chip) as they integrate both conversion and clock synchronization functionalities. Audio performance of such converters is, however, very dependent on the jitter rejection capabilities of the synchronization system. A methodology based on two period deviation tolerance templates is described for evaluating such synchronization solutions, prior to any silicon measurements. It is also a unique way for specifying expected performance of a synchronization system in the presence of jitter on the audio interface. The proposed methodology is applied to a self-synchronizing audio converter and its advantages are illustrated by both simulation and measurement results.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society