Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

Study of the Interaction between Radiating Systems in a Coaxial Loudspeaker

In this work the procedure followed to study the interaction between the mid and high frequency radiating systems of a coaxial loudspeaker is explained. For this purpose a numerical Finite Element model was implemented. In order to fit the model, an experimental prototype was built and a set of experimental measurements, electrical impedance, and pressure frequency response in an anechoic plane wave tube among these, were carried out. So as to take into account the displacement dependent nonlinearities, a different input voltage parametric analysis was performed and internal acoustic impedance was computed numerically in the frequency domain for specific phase plug geometries. Through inversely transforming to a time differential equation scheme, a lumped element equivalent circuit to evaluate the mutual acoustic load effect present in this type of acoustic coupled systems was obtained. Additionally, the crossover frequency range was analyzed using the Near Field Acoustic Holography technique.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society