Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

Further Testing and Newer Methods in Evaluating Amplifiers for Induced Phase and Frequency Modulation via Tones, Amplitude Modulated Signals, and Pulsed Waveforms

This paper will present further investigations from AES Convention Paper 8194 that studied induced FM distortions in audio amplifiers. Amplitude modulated (AM) signals are used for investigating frequency shifts of the AM carrier signal with different modulation frequencies. A square-wave and sine-wave TIM test signal is used to evaluate FM distortions at the fundamental frequency and harmonics of the square-wave. Newer amplifiers are tested for FM distortion with a large level low frequency signal inducing FM distortion on a small level high frequency signal. In particular, amplifiers with low and higher open loop bandwidths are tested for differential phase and FM distortion as the frequency of the large level signal is increased from 1 KHz to 2 KHz.

Author:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society