Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

Low Frequency Noise Reduction by Synchronous Averaging under Asynchronous Measurement System in Real Sound Field

An important feature in synchronous averaging is the synchronization of sampling clock between the transmitting and receiving devices (e.g., D/A and A/D converters). However, in the case where the devices are placed apart, synchronization becomes difficult to gain. For such circumstances, an effective method is proposed that enables synchronization for an asynchronous measurement environment. Normally, a swept-sine is employed as a measuring signal but because its power spectrum is flat, the signal-to-noise ratio (SNR) is decreased in a real environment with high levels of low frequency noise. To solve this, the devised method adopts the means of “enhancing the signal source power in low frequencies” and “placing random fluctuations in the repetitive period of signal source.” Subsequently, its practicability was verified.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society