Community

AES Convention Papers Forum

Coefficient Interpolation for the Max Mathews Phasor Filter

Document Thumbnail

Max Mathews described what he named the “phasor filter,” which is a flexible building block for computer music, with many desirable properties. It can be used as an oscillator or a filter, or a hybrid of both. There exist analysis methods to derive synthesis parameters for filter banks based on the phasor filter, for percussive sounds. The phasor filter can be viewed as a complex multiply, or as a rotation and scaling of a 2-element vector, or as a real valued MIMO (multiple-input, multiple-output) 2nd order filter with excellent numeric properties (low noise gain). In addition, it has been proven that the phasor filter is unconditionally stable under time varying parameter modifications, which is not true of many common filter topologies. A disadvantage of the phasor filter is the cost of calculating the coefficients, which requires a sine and cosine in the general case. If pre-calculated coefficients are interpolated using linear interpolation, then the poles follow a trajectory that causes the filter to lose resonance. A method is described to interpolate coefficients using a complex multiplication that preserves the filter resonance.

Author:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society