Computational acoustical ecology is a relatively new field in which long-term environmental recordings are mined for meaningful data. Humans quite naturally and automatically associate environmental sounds with emotions and can easily identify the components of a soundscape. However, equipping a computer to accurately and automatically rate unknown environmental recordings along subjective psychoacoustic di-mensions, let alone report the environment (e.g., beach, barnyard, home kitchen, research lab, etc.) in which the environmental recordings were made with a high degree of accuracy is quite difficult. We present here a robust algorithm for automatic soundscape classification in which both psychometric data and computed audio features are compared and used to train a Naive Bayesian classifier. An algorithm for classifying the type of soundscape across different categories was developed. In a pilot test, automatic classification accuracy of 88% was achieved on 20 soundscapes, and the classifier was able to outperform human ratings in some tests. In a second test, classification accuracy of 95% was achieved on 30 soundscapes.
Authors:
Rajagopal, Krithika; Minnick, Phil; Leider, Colby
Affiliations:
University of Miami, Coral Gables, FL, USA; audio Precision, Beaverton, OR, USA(See document for exact affiliation information.)
AES Convention:
131 (October 2011)
Paper Number:
8581
Publication Date:
October 19, 2011
Subject:
Auditory Perception
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.