Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

Room Acoustics Using a 2.5 Dimensional Approach with Damping Included

Cavity modes of a finite bounded region with rigid boundaries can be used to compute the steady state harmonic response for point source excitation. In cuboid domains this is straightforward. In general regions, determining a set of orthonormal modes is more difficult. Previous work showed that for rooms of constant height, 3D modes can be computed from the cross section modes, and this used for a fast solution. This approach used modal damping. More realistic damping associated with wall areas could be included using a damped eigenvalue calculation of the cross section modes. This is restrictive on damping formulations. An alternative non-modal approach, using a trigonometric expansion through the height is proposed. This is still faster than 3D FEM.

Author:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society