Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

Virtual Room Acoustics: A Comparison of Techniques for Computing 3D-FDTD Schemes Using CUDA

High fidelity virtual room acoustics can be approached through direct numerical simulation of wave propagation in a defined space. 3D Finite Difference Time Domain schemes can be employed, and adept well to a parallel programming model. This paper examines the various approaches for calculating these schemes using the Nvidia CUDA architecture. We test the different possibilities for structuring computation, based on the available memory objects and thread-blocking model. A standard test simulation is computed at double precision under different arrangements. We find that a 2D extended tile blocking system, combined with shared memory usage, produces the fastest computation for our scheme. However, shared memory usage is only marginally faster than direct global memory access, using the latest FERMI GPUs.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society