Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

On the Improvement of Auditory Accuracy with Non-Indivisualized HRTF-Based Sounds

Auralization is a powerful tool to increase the realism and sense of immersion in Virtual Reality environments. The Head Related Transfer Function (HRTF) filters commonly used for auralization are non-individualized, as obtaining individualized HRTFs poses very serious practical difficulties. It is therefore extremely important to understand to what extent this hinders sound perception. In this paper, we address this issue from a learning perspective. In a set of experiments, we observed that mere exposure to virtual sounds processed with generic HRTF did not improve the subjects’ performance in sound source localization, but short training periods involving active learning and feedback led to significantly better results. We propose that using auralization with non-individualized HRTF should always be preceded by a learning period.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society