General purpose audio blind source separation algorithms have to deal with a large dynamic range for the different sources to be separated. In our algorithm the mixture is separated into single notes. These notes are clustered to construct the melodies played by the active sources. The non-negative matrix factorization (NMF) leads to good results in clustering the notes according to spectral features. The cost function for the NMF is controlled by a parameter beta. The choice of beta depends on the dynamic difference of the sources. The novelty of this paper is to propose a simple classifier to adjust the parameter beta to current dynamic ranges for increasing the separation quality.
Authors:
Spiertz, Martin; Gnann, Volke;
Affiliation:
Institut für Nachrichtentechnik, RWTH Aachen University, Aachen, Germany
AES Convention:
128 (May 2010)
Paper Number:
8130
Publication Date:
May 1, 2010
Subject:
Audio Processing—Music and Speech Signal Processing
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.