Community

AES Convention Papers Forum

Audio Equalization with Fixed-Pole Parallel Filters: An Efficient Alternative to Complex Smoothing

Document Thumbnail

Recently, the fixed-pole design of parallel second-order filters has been proposed to accomplish arbitrary frequency resolution similarly to Kautz filters, at 2/3 of their computational cost. This paper relates the parallel filter to the complex smoothing of transfer functions. Complex smoothing is a well-established method for limiting the frequency resolution of audio transfer functions for analysis, modeling, and equalization purposes. It is shown that the parallel filter response is similar to the one obtained by complex smoothing the target response using a hanning window: a 1/b octave resolution is achieved by using b/2 pole pairs per octave in the parallel filter. Accordingly, the parallel filter can be either used as an efficient implementation of smoothed responses, or, it can be designed from the unsmoothed responses directly, eliminating the need of frequency-domain processing. In addition, the theoretical equivalence of parallel filters and Kautz filters is developed, and the formulas for converting between the parameters of the two structures are given. Examples of loudspeaker-room equalization are provided.

Author:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society