Community

AES Convention Papers Forum

Forces in Cylindrical Metallized Film Audio Capacitors

Document Thumbnail

This paper is concerned with the analysis of forces acting in metalized polypropylene film capacitors in use in loudspeaker crossover circuits. Capacitors have been subjected to rapid discharge measurements to investigate mechanical resonance of the capacitor body and the electrical forces which drive the resonance. The force due to adjacent flat current sheets has been calculated in order that the magnitude of the electro-dynamic force due to the discharge current can be calculated and compared with the electrostatic force due to the potential difference between the capacitor plates. The electrostatic force is found to be dominant by several orders of magnitude, contrary to assumptions in previous work where the electro-dynamic force is assumed to be dominant. The capacitor is then modeled as a series of concentric cylindrical conductors and the distribution of forces within the body of the capacitor is considered. The primary outcome of this is that the electrostatic forces act predominantly within the inner and outer turn of the capacitor body, while all of the forces acting within the body of the capacitor are balanced almost to zero. Experimental results where resonant acoustic emissions have been measured and analyzed are presented and discussed in the context of the model proposed.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society