Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

Feature Selection vs. Feature Space Transformation in Music Genre Classification Framework

Automatic classification of music genres is an inherent field of music information retrieval research. Nearly all state-of-the-art music genre recognition systems start from the feature extraction block. The extracted acoustical features often could be correlated or/and redundant, which can course various difficulties on the classification stage. In this paper we present a comparative analysis on applying supervised Feature Selection and Feature Space Transformation algorithms to reduce the feature dimensionality. We discuss pro and contra of the methods and weigh the benefits of each one against the others.

Author:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society