This work presents a Multiple Input Single Output (MISO) nonlinear model in combination with sine-sweep signals as a method for nonlinear system identification. The method is used for identification of loudspeaker nonlinearities and can be applied to nonlinearities of any audio components. It extends the method based on nonlinear convolution presented by Farina, providing a nonlinear model that allows to simulate the identified nonlinear system. The MISO model consists of a parallel combination of nonlinear branches containing linear filters and memory-less power-law distortion functions. Once the harmonic distortion components are identified by the method of Farina, the linear filters of the MISO model can be derived. The practical application of the method is demonstrated on a loudspeaker.
Authors:
Kadlec, Frantisek; Lotton, Pierrick; Novak, Antonin; Simon, Laurent
Affiliations:
Czech Technical University;Universite du Maine, LAUM(See document for exact affiliation information.)
AES Convention:
124 (May 2008)
Paper Number:
7441
Publication Date:
May 1, 2008
Subject:
Software, Instrumentation, and Measurement
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.