Community

AES Convention Papers Forum

Modelling Frequency-Dependent Boundaries as Digital Impedance Filters in FDTD Room Acoustic Simulations

Document Thumbnail

This paper presents a new method for modelling frequency-dependent boundaries in finite difference time domain (FDTD) and Kirchhoff variable digital waveguide mesh (K-DWM) room acoustics simulations. The proposed approach allows direct incorporation of a digital impedance filter (DIF) in the multi-dimensional (i.e.\ 2D or 3D) FDTD boundary model of a locally reacting surface. An explicit boundary update equation is obtained by carefully constructing a suitable recursive formulation. The method is analysed in terms of pressure wave reflectance for different wall impedance filters and angles of incidence. Results obtained from numerical experiments confirm the high accuracy of the proposed digital impedance filter boundary model, the reflectance of which closely matches locally reacting surface (LRS) theory. Furthermore, a numerical boundary analysis (NBA) formula is provided as a technique for analytic evaluation of the numerical reflectance of the proposed digital impedance filter boundary formulation.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Session Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society