AES Convention Papers Forum

Music-Inspired Harmony Search Algorithm Applied to Feature Selection for Sound Classification in Hearing Aids

Document Thumbnail

This paper explores the application of the music-inspired Harmony-Search algorithm to the problem of feature selection for sound classification in digital hearing aids. The importance of this problem is given by the strong computational constraints inherent to the DSPs used in modern digital hearing aids. The goal of the feature selection algorithm is to select a subset of features in order to reduce the computational complexity of the system while maintaining a low probability of error. A set of experiments will be performed to test the performance of the proposed system, using a total of 74 different features. The results will be compared with those obtained using other widely-used algorithms, such as sequential search algorithms or random search.

AES Convention: Paper Number:
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society