Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Convention Papers Forum

Initial Investigation of Signal Capture Techniques for Objective Measurement of Spatial Impression Considering Head Movement

In a previous study it was discovered that listeners normally make head movements attempting to evaluate source width and envelopment as well as source location. To accommodate this finding in the development of an objective measurement model for spatial impression, two capturing models were introduced and designed in this research, based on binaural technique: 1) rotating Head And Torso Simulator (HATS), and 2) a sphere with multiple microphones. As an initial study, measurements of interaural time difference (ITD), level difference (ILD) and cross-correlation coefficient (IACC) made with the HATS were compared with those made with a sphere containing two microphones. The magnitude of the differences was judged in a perceptually relevant manner by comparing them with the just-noticeable differences (JNDs) of these parameters. The results showed that the differences were generally not negligible, implying the necessity of enhancement of the sphere model, possibly by introducing equivalents of the pinnae or torso. An exception was the case of IACC, where the reference of JND specification affected the perceptual significance of its difference between the two models.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society