Community

AES Convention Papers Forum

A New Methodology for the Acoustic Design of Compression Driver Phase-Plugs with Concentric Annular Channels

Document Thumbnail

In compression drivers a large membrane is coupled to a small horn throat resulting in high efficiency. For this efficiency to be maintained to high frequencies the volume of the resulting cavity, between horn and membrane, must be kept small. Early workers devised a phase-plug to fill most of the cavity volume and connect membrane to horn throat with concentric annular channels of equal length to avoid destructive interference [1]. Later work, representing the cavity as a flat disc, describes a method of calculating the positions and areas of these annular channels where they exit the cavity, giving least modal excitation, thus avoiding undesirable response irregularities [2]. In this paper the result of applying both the equal path-length and modal approaches to a phase-plug with concentric annular channels coupled to a cavity shaped as a flat disc is further explored. The assumption that the cavity may be represented as a flat disc is investigated by comparing its behavior with that of an axially vibrating rigid spherical cap radiating into a curved cavity. It is demonstrated that channel arrangements derived for a flat disc are not optimum for use in a typical compression driver with a curved cavity. A new methodology for calculating the channel positions and areas giving least modal excitation is described. The impact of the new approach will be illustrated with a practical design.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society