This paper explores the application of multilayer perceptrons (MLP) to the problem of speech/non-speech classification in digital hearing aids. When properly designed and trained, MLPs are able to generate an arbitrary classification frontier with a relatively low computational complexity. The paper will focus on studying the key influence of the training process on the performance of the system. An appropriate election of the training algorithm will help to provide better classification with a lower number of neurons in the network, which leads to a lower computational complexity. The results obtained will be compared with those obtained from two reference algorithms (the Fisher linear discriminant and the k-Nearest Neighbour), along with some comments regarding the computational complexity.
Authors:
Alexandre, Enrique; Álvarez, Lorena; Cuadra, Lucas; Rosa-Zurera, Manuel
Affiliation:
Universidad de Alcalá
AES Convention:
122 (May 2007)
Paper Number:
7136
Publication Date:
May 1, 2007
Subject:
Analysis and Synthesis of Sound
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.