Community

AES Convention Papers Forum

Loudspeaker and Room Response Modeling with Psychoacoustic Warping, Linear Prediction, and Parametric Filters

Document Thumbnail

Traditionally, room response modeling is performed to obtain lower order room impulse response models for real-time applications. These models can be FIR or IIR, and maybe either linear-phase or minimum-phase. In this paper, we present an approach to model room responses using linear predictive coding (LPC) and parametric filters designed in the frequency warped domain. Frequency warping to the psychoacoustic Bark scale allows significant lower filter order designs. Within this context, the LPC model utilizes a significantly lower number of poles to model room resonances at low frequencies in the warped domain. The relatively low-order LPC pole locations and gains are then used to determine the center frequencies, the gain, and Q of a parametric filter bank. Gain and Q optimization of the parametric filter bank is performed to match the parametric filter spectrum to the LPC spectrum. Subsequently, the second-order poles and zeros of the parametric filter bank are directly unwarped back into the linear domain for low-complexity real-time applications. The results show that warping lowers the computational requirements for determining the roots as the density of the roots and the number of roots of the LPC polynomial is substantially reduced. Furthermore, results from using simply 4-6 parametric filter banks, modeled from the LPC spectrum, below 400 Hz show significant equalization.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society