Community

AES Convention Papers Forum

DSP-based Sensorless Velocity Observer with Audio Applications in Loudspeaker Compensation

Document Thumbnail

Cone velocity of loudspeakers has been long recognized as an important parameter for loudspeaker compensation. In the paper, a cone velocity observer that requires no sensor is developed on the basis of state-space estimation. Linear quadratic Gaussian (LQG) theory in conjunction with multirate processing is employed in the design of the observer. The experimental results show close agreement between the velocities obtained by using the proposed technique and the measurement by a laser vibrometer. In addition, the system allows for self-identification and automated filter synthesis. The compensation filters are designed using the quantitative feedback technique (QFT) and implemented on a digital signal processor (DSP). The system is applied to two audio problems in loudspeaker compensation: bass enhancement and room response equalization. Experimental results are discussed.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society