Community

AES Convention Papers Forum

Maximum Efficiency of Compression Drivers

Document Thumbnail

Small-signal calculations show that the maximum nominal efficiency of a horn loudspeaker compression driver is 50% and the maximum true efficiency is 100%. Maximum efficiency occurs at the driver's resonance frequency. In the absence of driver mechanical losses, the maximum nominal efficiency occurs when the reflected acoustic load resistance equals the driver 's voice-coil resistance and the maximum true efficiency occurs when the reflected acoustic load resistance is much higher that the driver’s voice-coil resistance. To maximize the driver 's broad-band true efficiency, the Bl force factor must be increased as much as possible, while jointly reducing moving mass, voice-coil inductance, mechanical losses, and front airchamber volume. Higher compression ratios will raise high-frequency efficiency but may decrease mid-band efficiency. This paper will explore in detail the efficiency and design implications of both the nominal and true efficiency relationships including gain-bandwidth tradeoffs.

Author:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society