Community

AES Convention Papers Forum

Full-Duplex Systems for Sound Field Recording and Auralization Based on Wave Field Synthesis

Document Thumbnail

For high-quality multimedia communication systems such as telecollaboration or virtual reality applications, both multichannel sound reproduction and full-duplex capability are highly desirable. Full 3D sound spatialization over a large listening area is offered by wave field synthesis, where arrays of loudspeakers generate a prespecified sound field. However, before this new technique can be utilized for full-duplex systems with microphone arrays and loudspeaker arrays, an efficient solution to the problem of multichannel acoustic echo cancellation (MC AEC) has to be found in order to avoid acoustic feedback. This paper presents a novel approach that extends the current state of the art of MC AEC and transform-domain adaptive filtering by reconciling the flexibility of adaptive filtering and the underlying physics of acoustic waves in a systematic and efficient way. Our new framework of wave-domain adaptive filtering (WDAF) explicitly takes into account the spatial dimensions of loudspeaker arrays and microphone arrays with closely spaced transducers. Experimental results with a 48-channel AEC verify the concept for both, simulated and measured room acoustics.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Session Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society