Community

AES Convention Papers Forum

Compander Domain Approach to Scalable AAC

Document Thumbnail

We propose a new approach to achieve efficient scalability in audio coders, and demonstrate its performance using the MPEG-4 Advanced Audio Coder (AAC). In conventional scalable coding, the enhancement-layer performs straightforward re-quantization of the base-layer reconstruction error. This coding scheme implicitly discards useful information from the base-layer, and does not truly minimize a perceptually meaningful distortion criterion such as the noise-mask ratio. We reformulate the problem of scalable coding within a companding framework, and show that re-quantization in the compander's compressed domain achieves, in the asymptotic sense, optimal scalability. Based on this observation, we develop a scalable AAC coder which performs enhancement-layer quantization while exploiting all the information available at that layer. Simulation results of a two-layer scalable coder on the standard test database of 44.1kHz sampled audio show that the proposed approach yields substantial savings in bit rate for a given reproduction quality.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society